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Abstract
This study introduces a new class of biodiversity measurement - the Diversity Measures at Distance - which enables diversity
evaluation at any scale of observation and provides interpretative values of the results. The new class of measures are based
on geolocalized data and quantify local diversity very precisely. Diversity values are interpreted using the Hill numbers (Hill,
1973). We propose visualizing the results by plotting them in a detailed and intelligible map of the local diversity at a
chosen scale. After introducing our methodology, we conduct the first application as a proof of concept, measuring the
local biodiversity in the Parc des Buttes Chaumont in Paris. Our proposed application illustrates the great potential of this
new approach and paves the way for future research. Results and maps of local biodiversity levels are provided in addition
to data and R code for reproducible research.
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1. Introduction
Biodiversity and its conservation are a key challenge of
contemporary times (IPBES, 2019; Roy et al., 2023),
and evaluating biodiversity is the first step for any
analysis or policy development. Therefore, measuring
biodiversity precisely and making its results intelligi-
ble is essential for biodiversity analysis and the sub-
sequent estimation of the costs associated with bio-
diversity erosion (Turbelin et al., 2023). Biodiversity
covers all forms of living organisms; thus, many dif-
ferent approaches and definitions have been proposed
for its evaluation. A certain number of biological di-
versity measures are very well-known and largely used
(e.g., the Shannon index or the Simpson index) while
others remain quite confidential (Krebs, 1999; Marcon,
2024).1 While previous research has emphasized that
diversity measures should be rigorously developed be-
cause each indicator responds to a particular definition
of diversity, the scale at which diversity has to be eval-
uated is less discussed. Diversity level has generally
been estimated within a predefined zone; for example,
plots in forests (Broadbent et al., 2008) or regions such
as the French Small Agricultural Regions (Pythagore
et al., 2017; Cocco et al., 2023). To the best of our
knowledge, no approach has been developed to simul-
taneously assess local diversity (i) for any distance of
an environment analyzed and (ii) for any chosen defini-
tion of diversity. This study fills the gap by providing
a new class of indicators called Diversity Measures at
Distance (DMD), which are based on the Hill numbers

1In our study, the term “biodiversity” is used when diversity
concerns a topic directly related to biology or ecology, and the
term “diversity” is retained otherwise.
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(Hill, 1973) and make it possible to interpret diversity
results regardless of the entropy measure used. The
divent R package (Marcon and Puech, 2025) offers
simple DMD computation and explicit mapping of lo-
cal diversity.

We expect our proposed DMD to be of consider-
able interest to researchers in many fields. For ex-
ample, consider a case of a disease contagion that af-
fects biodiversity. If we suppose that biotic factors
are greater at small scales (Cohen et al., 2016) and
if we suspect that interactions between species occur
at very small distances, biodiversity must be precisely
measured at a very small scale and at any point of the
territory. Diversity evaluations at a large scale are far
less pertinent in such cases than those made in a close
environment. The reason is that such contagions af-
fect immediate neighbors, not those located at large
distances. Measuring diversity at too large a scale is
insufficiently informative for identifying infested areas.
In that sense, DMD enables a more comprehensive un-
derstanding of the underlying interactions between the
species analyzed. Such local diversity evaluations are
essential and offer a considerable opportunity to limit
the economic costs associated with contagious diseases
in terms of monitoring, mitigation, and treatment.

The remainder of this paper is organized as follows.
Section 2 provides a review of contemporary diversity
indices. As we show, any index has a specific meaning
in gauging biodiversity; therefore, the use of a given in-
dex must be constructed with care and motivates our
analysis to examine various indicators. This section
also introduces Hill numbers (Hill, 1973) that are at
the basis of the DMD. We explain why Hill numbers
are essential to correctly quantify diversity. We then
introduce the DMD in Section 3, presenting the statis-
tical framework and associated utility in measuring di-
versity. Section 4 presents an empirical application for
evaluating biodiversity with the DMD that is focused
on the diversity of tree species located in the Parc
des Buttes Chaumont in Paris. Our results demon-
strate that species biodiversity varies greatly inside
the park, and this finding remains robust regardless
of the local scale used or the definition of biodiversity
applied. The results confirm that a park-wide estima-
tion of diversity obviously masks local disparities of
diversity that DMD on the contrary perfectly grasp.
In Section 5, we conclude by highlighting the utility
of the DMD for environmental economics application
and discuss future research in the field.

2. Diversity indices: a review of the most
common diversity indices

Numerous diversity measures coexist in previous re-
search (Marcon, 2024). Some are well-known and ap-
plied in many applications and others remain quite
confidential. The richness, the Shannon index, and
the Simpson index are among the best known and most
widely used to evaluate biodiversity. In this section,
we present and discuss these three indices. For clarity,

we consider trees as a taxonomic group in the following
illustrative examples.2 Each tree is associated with a
unique species and the biodiversity level is based on
an indicator that quantifies tree species diversity.

2.1 Richness
Richness is the most simple and intuitive index to
present. If we focus on species, species richness is de-
fined as the total number of different species located
in the area under study (McIntosh, 1967). Practically,
a higher number of species indicates higher diversity.
According to this definition, the number of individuals
per species (i.e., abundance) is not considered as the di-
versity measurement captured by species richness only
concerns the number of different species located on
the area under study. As a result, the diversity of
two forests with the same number of species will be
exactly the same, regardless of the number of trees
located in each forest. In practice, measurement diffi-
culty is related to territories for which an exhaustive
count of all individuals is challenging (e.g., for tropi-
cal forest), wherein rare species may not be observed
and richness is underestimated. More sophisticated
techniques based on nonparametric methods may be
useful in such cases, and developments have been pro-
posed following Chao (1984) or Burnham and Overton
(1979).

2.2 Shannon index
The Shannon index (Shannon, 1948) integrates the
abundance of species to measure diversity. To un-
derstand the Shannon index intuitively, we will use
the following example. Consider a forest where each
tree is only characterized by its species. In more tech-
nical terms, consider an experiment with S possible
outcomes denoted {r1,r2, ...rs, ...,rS}. In our case, the
outcomes correspond to the species of an observed tree.
The rarity of species is defined as 1/ps, where ps is the
probability of obtaining the outcomes rs among the S
experimental outcomes. The minimum value of rarity
is 1, which is obtained if only one species is present.
The maximum value is reached when species s is rare,
in which case, ps is extremely small and rarity tends to-
ward infinity. The logarithm of rarity is the Shannon
information function denoted as I(ps), which decreases
when ps increases. If ps tends toward zero, then the
information tends toward infinity and it takes a value
of 0 if ps equals to 1. As Marcon (2019) argued, the
information function can be understood as a quantity
of surprise. If a species is rare (e.g., ps is small), the
quantity of information for that outcome is high, and
as a consequence, I(ps) is high. In contrast, if some
species are abundant, the quantity of surprise asso-
ciated with its outcome is low, as is the information
function. The Shannon entropy index is defined as the
average information given by all possible outcomes of
the experience as follows:

2This is not a strong assumption because studies that used
biodiversity measures have generally only focused one taxo-
nomic group, e.g., Zilliox and Gosselin (2014).
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∑
s

ps ln
1
ps

(1)

The Shannon index determines the level of the av-
erage information generated by a random draw of an
individual. Shannon called this entropy by analogy
with statistical physics, referencing the characteriza-
tion of the complexity of gas particles by Boltzmann
(1877, translated by Sharp and Matschinsky, 2015).
However, no simple, intuitive interpretation of the nu-
merical value of Shannon’s entropy has been produced.
We will return to this point in the discussion.

2.3 Simpson index
The Simpson (1949) index can be understood as the
probability of drawing two entities that belong to two
different species. If we retain the same notations as in
the Shannon index equation, the Simpson index can
be defined as follows:

1−∑
s

ps
2 (2)

The minimum value of the Simpson index is 0,
which occurs when a species has a probability of be-
ing drawn of 1. The maximum value is 1, which occurs
with a large number of species, which makes ps close
to 0. Therefore, any diversity value can be obtained
between these two extreme cases.

2.4 Unification: Generalized entropy
Classical biodiversity indices can be unified using infor-
mation theory. Richness and Simpon’s indices can be
understood as variations of the Shannon index wherein
the information function is respectively (1− ps)/ps and
1− ps.

An elegant unification (Marcon et al., 2014) is pos-
sible using the generalized entropy proposed by Tsallis
(1994). The deformed logarithm of order q, where q
is a parameter, is a function that deforms the natural
logarithm by changing its curvature but remains an in-
creasing function and respects lnq1 = 0. The deformed
logarithm of order q is defined as follows:

{
lnq x = x1−q−1

1−q ,q ̸= 1

ln1 x = lnx
(3)

The three common diversity indicators presented
above constitute particular cases of the generalized
Tsallis entropy. The definition of the Shannon index
(eq. (1)) can be generalized as follows:

qH = ∑
s

ps lnq
1
ps

(4)

Special values of q define orders of entropy as fol-
lows:

• If q=0, equation (4) reduces to ∑s ps(
1
ps
−1),

which equals the number of species minus 1 and
is denoted as 0H.

• If q=1, the generalized entropy is simply Shan-
non’s entropy, denoted as 1H.

• If q=2, we obtain a value 1−∑s ps
2 in equation

(4), which is the Simpson index, denoted as 2H.
These three q values are the most used, but are not

exclusive (Baumgärtner, 2007; Marcon, 2019). Equa-
tion (4) defines the entropy of order q as the aver-
age information from individual observations, where
the information is a deformed logarithm of species rar-
ity. Parameter q can be understood as the instrument
for assigning more or less importance to rare species.
Small values emphasize them, where a species with a
single individual counts for 1 in richness (q=0), not
less than a species that encompasses all individuals
but 1: in this example richness is 2.

Increasing q lowers the rare species count. The
Simpson’s entropy of our example is close to 0, as if
the rare species did not exist.3

2.5 Hill numbers
The Hill numbers of order q (Hill, 1973) are the num-
ber of equiprobable species that obtains the same en-
tropy as the observed distribution. Hill numbers can
be computed as the deformed exponential of entropy
as follows:

qD = e
qH
q (5)

where the deformed exponential is the reciprocal
function of the following deformed logarithm:

{
ex

q = (x(1−q)+1)
1

(1−q) ,q ̸= 1
ex

1 = ex
(6)

Hill numbers enable an intuitive understanding of
entropy. We present the following example to explain
this more clearly. Imagine that 4 is the estimated Hill
number of order 1 that measures the diversity of tree
species in a park. This means that four tree species
in the park with the same probability of apparition
(each one equal to 1/4) would constitute the park’s
Shannon’s entropy. This entropy is ln(4)≈ 1.4; a value
that cannot be easily interpreted. Hill numbers reduce
the complexity of diversity indices to a single value for
each order, which is also called the effective number of
species.

2.6 Discussion
A series of remarks can be drawn from this short pre-
sentation of the most traditional diversity measure-
ments.

Diversity can be evaluated in multiple
ways. Different concepts of diversity can be explored,

3Specifically, abundances of abundant and rare species are
n−1 and 1 with n ≫ 1. Then, 2H ≈ 2/n, which is close to 0.
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resulting in different measurements. As a conse-
quence, using one given index should thus be carefully
considered, e.g., see Dickman (1968), Peet (1974) or
more recently, Morris et al. (2014), Nagendra (2002).
Diversity indices should always be motivated by the
research question under study, as is the case for
any quantitative indices (Marcon and Puech, 2017).
Here, we only consider species-neutral measures of
diversity, ignoring species’ identity and considering
them equally different, in contrast to phylogenetic
(Marcon and Hérault, 2015) or functional (Leinster
and Cobbold, 2012) diversity that consider dissimilar-
ity but are beyond our scope. Therefore, the choice
of one specific diversity index is only driven by the
importance assigned to rare species. Species richness
is a central measure for conservation purposes while
Simpson’s diversity is a better tool for assessing
community functioning, e.g., carbon storage, driven
by a dominant species (Liang et al., 2016).

While the three classical indices are the most used,
it is difficult to interpret entropy measures (Jost,
2006) beyond the special orders 0 and 2. In contrast,
the Hill numbers make diversity immediately intelligi-
ble as the dimension is the number of species, which
can be compared between different orders of diversity
wherein a diversity profile plots diversity with respect
to its order (Tothmeresz, 1995).4 Hill numbers enable
a comparison of two entities’ diversity, e.g., two parks,
at all orders.

Jost (2006) argued that only the Hill numbers
should be called diversity, while classical indices
should be called entropy. Both are more than indices;
they are measures of diversity (Jost, 2009). The Hill
numbers refer to the number of species, and entropy
concerns the amount of information.

3. Introducing Diversity Measures at
Distance

A unified framework for local diversity measurement
based on an entropy framework has not yet been con-
ceived in the literature. Our proposed DMD fills this
gap by presenting a continuous framework for evaluat-
ing biodiversity in three steps.

Step 1: The choice of the distance. Diversity
is measured around each entity analyzed at distance r,
which can take any value (e.g., 5 meters, 10 meters,
50 meters etc.) required by the underlying model or
theoretical assumptions of the research question. For
example, if we are examining a contagious disease that
spreads between trees and we suspect that the level of
biodiversity matters, this should be calculated at a
very small radii r around each tree.

Step 2: Choosing the order of diversity. This
choice determines the value of q for the Hill number.
One decision rule is the importance assigned to rare or
abundant species. If the researcher wants to treat all
species in the same way, q=1 is a reasonable choice in

4A diversity profile is presented in Figure 2 for the DMD
empirical application proposed in this study.

ecology (e.g., see the discussion in Roswell et al. (2021)
on this point).

Step 3: Visualizing the results. Mapping the
calculated Hill numbers is highly convenient for illus-
trating all results. Therefore, we proceed as follows.
First, we calculate the entropy at order q around
each geolocalized entity for the chosen distance r. We
then calculate the estimated Hill numbers around
each entity by taking the exponential of entropy
values. We then apply a spatial smoothing of values
to plot them across the area for visualization, using
the Smooth.ppp() function of the R package Spatstat,
(Baddeley and Turner, 2005). We employ Gaussian
kernel smoothing with the bandwidth as defined by
Scott (1992). We recommend the use of contour lines
that identify similar values to Hill numbers’ estimates.
We then use the new R package (divent) to compute
DMD (Marcon and Puech, 2025). This R package
facilitates researchers’ use of R code to calculate
DMD and visualize their results.

4. Empirical application on trees in the
Parc des Buttes Chaumont (Paris)

As proof of concept, we apply DMD to evaluate the
biodiversity of the Parc des Buttes Chaumont, a
Parisian park located in the 19th arrondissement that
was established in 1867 and is an considerably large
park area in the northeast of Paris of an approximate
25-hectare area.5

We only base biodiversity evaluation in Parc des
Buttes Chaumont analyzing trees. Among all taxa,
trees seem to be particularly noteworthy for park users
(Muratet et al., 2015). We obtain the geolocalization
of trees and their characteristics from Paris open data,
which is available at: https://opendata.paris.fr.6
This database contains more 200,000 trees inventoried
in the majority of spaces managed by the city of Paris.
All results and maps of local biodiversity levels are
provided in the appendix in addition to data and R
code for reproducible research.

4.1 Overview of the area
The geolocalized positions of trees in the Parc des
Buttes Chaumont is provided in addition to some char-
acteristics, notably their genus, species, and circumfer-
ence. We retain the circumference to calculate trees’
diameter, which we use as a proxy of their trunk area
cut 1.3 meters above ground (“at breast height” in
forestry vocabulary). The spatial distribution of trees
in February 2025 is presented in Figure 1.

A total of 2356 trees are distributed across the
park, with the exception of the lake at the center of the
park that surrounds an island, grassy areas (notably,

5The history and outstanding construction of the park are
detailed in Komara (2009).

6The database Arbres, Direction des Espaces Verts et de
l’Environnement - Ville de Paris, February 2025, under license
ODbL.

https://opendata.paris.fr
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Figure 1. Spatial distribution of trees in the Parc des Buttes Chaumont.
Note: Distribution is obtained from Paris Open Data in February 2025. The most abundant genera are
presented in decreasing order. Coordinates on both axes are in meters (Lambert 93 projection) and diameters
are in centimeters. We magnified the visualization of individual diameters twice for improved readability.

south of the lake), paths, and the railway, which is eas-
ily identified by the straight line at the eastern part
of the park. The most frequent trees are of the gen-
era Taxus (yews), Acer (maples), and Pinus (pines),
representing more than the half of the trees in the
park. Yews and pines are highly overrepresented in
some portions of the park, as illustrated in Figure 1.
If we consider the species of trees (and not only genus),
only four -the common yew (Taxus baccata), the black
pine (Pinus nigra), the sycamore maple (Acer pseudo-
platanus) and the horse chestnut (Aesculus hippocas-
tanum)- represent around the half of the total number
of tree species in the Parc des Buttes Chaumont.

4.2 Measuring diversity at the park level
In the first step, we compute the three common
entropy indices park-wide, emphasizing two main
results.

• Richness is 149, indicating that 149 species are
inventoried across the park. This level of rich-
ness is quite high because many trees were in-
tentionally planted; therefore, the diversity level
in the park is greater than that observed in Eu-
ropean forests (Slik et al., 2015).

• Over the entire Parc des Buttes Chaumont, the
Shannon index is estimated to be 3.42 and the
Simpson index is 0.92. Galle et al. (2021) noted
that ecological studies have predominantly
elicited Shannon index values between 1.5 and
3.5, but these values are difficult to interpret.

In the second step, we estimate the Hill numbers

for the entire park as a unique site to determine the
number of equiprobable outcomes that have the same
entropy as the observed system (Hill, 1973). Figure 2
presents the results, which is called a diversity profile
(Tothmeresz, 1995). All orders of diversity are rep-
resented because they have the same unit value; the
number of species. The value of the classical orders of
diversity are presented in the plot. Shannon’s diversity
(q = 1) equals the exponential of Shannon’s entropy of
30. This diversity value means that 30 species with the
same probability of occurrence have the same diversity
of order 1 as the Parc des Buttes Chaumont.

Simpson’s diversity is 13. Diversity is a decreasing
function of its order as rare species are increasingly
neglected when q rises and less equiprobable species
are needed to provide the observed level of diversity.
If all species were actually equiprobable, then the di-
versity profile would be flat and diversity would equal
richness, regardless of the order considered.

This result is noteworthy but it certainly masks
some fluctuations in diversity that may appear inside
the park, at a thinner level than park-wide. The local
diversity analysis presented in the next subsection will
provide an answer.

4.3 Measuring local diversity with DMD
4.3.1 Local biodiversity maps
As a proof of concept, we evaluate the local diversity
of trees in Parc des Buttes Chaumont based on rich-
ness, Shannon, and Simpson indices for distances of
5 meters and 25 meters.
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Figure 2. Profile of the Hill numbers on the
entire Parc des Buttes Chaumont in 2025.
Note: Diversity is plotted based on order wherein
richness corresponds to order 0, Shannon’s index to
order 1, and Simpson’s index to order 2. Calculations
are based on Paris Open Data in February 2025.

In what follows, we only consider diversity using
Hill numbers to enable interpretation of the diversity
results for any entropy measure or local distance. As
expected, the results enable the continuous measure-
ment of local biodiversity levels across the park. All
maps in Figure 3 are interpretable in terms of effective
numbers of species and the Hill numbers are directly
observed on scale or contour lines that offer an easy
illustration of local diversity levels. The gradient of
colors helps to identify areas with high local biodiver-
sity (warm colors) and those with low local biodiversity
(cold colors).

4.3.2 Key results on local biodiversity provided by DMD
• Result 1: Levels of biodiversity observed across

the park vary greatly.
This result is obtained regardless of the map con-

sidered; therefore, we confirm that diversity estima-
tions of Parc des Buttes Chaumont at the scale of the
park obviously mask local disparities in diversity. Re-
gardless of the measure of diversity or distance used,
we can easily and clearly identify some areas charac-
terized with high biodiversity values and others with
medium or low biodiversity. This confirms that a park-
wide biodiversity estimation may be too crude to ac-
curately characterize the observed biodiversity.

• Result 2: The choice of local scale matters when
measuring diversity.

Small distances (5 meters) enable the identification
of local areas with high biodiversity. At this scale, di-
versity is essentially richness, which is almost constant
with respect to its order because very few trees are
included in a 5-meter radius and most species have
abundance 1. Larger distances provide smoother bio-
diversity evaluations. Comparing local diversity maps
of Parc des Buttes Chaumont at distances 5 and 25 me-
ters first reveals that diversity is higher when a greater
distance is considered because more trees are included,

thus more species. Increasing the distance up to the
size of the park would yield increasingly homogenous
maps, with diversity levels tending toward those of
the whole park given above. However, diversity may
accumulate more slowly in some areas; for example,
the relatively high diversity in the northwestern side
of the park at small scale (close to 2 effective species at
5 meters) appears to be relatively low at the 25-meter
scale. The choice of the distance is crucial, depending
on the scale of the question under study.

5. Implications for environmental
economics

5.1 Main improvements
Our proposed DMD approach responds to different ob-
jectives.

First, our methodology enables biodiversity
measurement as a multiscale phenomenon. As
interactions within the living world can be observed
from very microscopic to broad levels, indicators at
any geographical scale can be easily integrated. This
framework is possible by adopting an internal perspec-
tive that is from every entity composing the taxonomic
group(s) under study and not from an external per-
spective. Employing the distance surrounding the en-
tities that compose the taxonomic group(s) seems to
be an effective research approach for accurately deter-
mining the effect of their environment. Some studies
have previously noted the importance of precisely con-
sidering the scale of observation for understanding the
effects of different taxonomic groups on the environ-
ment. For example, Brunbjerg et al. (2018) focused
on this point for birds, bats, bees, and hoverflies, and
Marcon and Puech (2023) about contagious diseases
in trees.

A notable feature of the proposed DMD measure-
ment is that it should be less exposed to the Modifiable
Areal Unit Problem (MAUP) (Openshaw and Taylor,
1979; Openshaw, 1984), which results from zoning a
territory for data that were initially nonaggregated.
As a consequence, zoning estimates are affected by the
position and size of the zones under study. Zoning
construction and the level of spatial resolution could
be more or less sophisticated (Féret and Asner, 2014;
Mouchet et al., 2017; Bareille et al., 2020). For exam-
ple, Bennie et al. (2011) introduced a paired-sample
version of the Simpson index based on the lag distance
between two samples. This problem has been widely
studied in many fields of research and an approach
centered on the entities analyzed has been identified
to circumvent the MAUP, e.g., Arbia (1989) in eco-
nomics and Jelinski and Wu (1996) in ecology.

Second, the methodology proposed in this
article fully aligns with existing research that
sought to assess space in a more precise man-
ner when measuring biodiversity. Our method
complements studies that have integrated entities’
neighborhoods by adopting an approach that is not
based on zoning but centered on the entities analyzed.
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Figure 3. Local tree diversity (Hill numbers) in the Parc des Buttes Chaumont.
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column) and 25 meters (second column). Distribution is based on Paris Open Data in February 2025.
Coordinates on both axes are in meters (Lambert 93 projection).
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Therefore, our method aligns with Wiegand et al.
(2007), who used a spatial point process methodolog-
ical framework, retaining the continuity of distances
between geolocalized entities’ positions. The model,
called Individual Species-Area Relationships (ISAR),
subtly links the well-known theoretical framework
of the Ripley’s K-function (Ripley, 1976, 1977),
combining distance-based measures and the notion of
diversity. This entity-centered approach enables an
analysis of entities’ local environments at all distances.
Although this measure can be used for all distances,
in their empirical example, the authors only chose a
unique distance of 30 meters to map diversity values
for Barro Colorado Island (Panama) and Sinharaja
(Sri Lanka) sites. Mapping is a useful technique for
determining locally observed diversity for a specific
distance motivated by a precise research question.7

In the same vein, Marcon and Puech (2023) em-
phasized the usefulness of mapping spatial structures
in continuous space with a measure derived from the
Ripley’s K function that is applicable in a heteroge-
neous space (not a homogeneous one as for the Ripley’s
K function). This measure, called the M function, is
applied to a case of a contagious disease that affects
maple trees in a Parisian park. This function is not
linked to the concept of diversity in the article but
that of spatial concentration. While the average en-
vironment can be described for each distance, a focus
on specific distances reveals interactions between the
entities analyzed and characterizes spatial structures
of concentration or dispersion.

The continuous approach for assessing diversity
proposed in this study is not based on the ISAR
method or graph theory, e.g., Rajala and Illian (2012),
but on entropy measures centered on the entities
analyzed. Consequently, our approach also aligns
with research examining the spatialization of entropy
indices. For example, Shimatani (2001) proposed
distance-dependent Simpson indices to examine the
level of diversity around entities for a distance r;
however, no local mapping of values was proposed,
and an interpretation of diversity values was not pre-
sented. The spatialization of the Shannon index was
also investigated since Batty (1974), and Altieri et al.
(2021) provide an overview of this literature. Some
contributions have been proposed considering zoning
territory (Boroushaki, 2017) and individual-centered
analysis. For example, Reardon and O’Sullivan (2004)
defined local estimation of entropy around an entity
for socioeconomic purposes.

Finally, our methodology offers the possibil-
ity to accurately understand the meaning of the
local diversity results observed. As we previously

7Notably, mapping diversity based on ad hoc zonings can
limit the estimation bias associated with MAUP. For example,
Tsai et al. (2015) retained a spatial representation for the species
richness of woody plants in the Fushan Forest Dynamics Plot
near Taiwan using an estimate per 400m2, and the ISAR ap-
proach was also proposed in the same article, complementing
these results.

emphasized, no intuitive interpretation of the Shan-
non or Simpson entropy is available. Our approach,
based on the Hill numbers, fills that gap for the rich-
ness, Shannon and Simpson biodiversity indices. The
interpretation of the biodiversity results is crucial. For
example, biodiversity measurements are essential for
decision makers, as indicators provide decision-making
tools for public policy development (European Parlia-
ment et al., 2020; Bureau et al., 2020). Accurately
measuring biodiversity and making its results intelli-
gible is essential for the biodiversity analysis to es-
timate the costs associated with biodiversity erosion
and restoration (Turbelin et al., 2023). Moreover, lo-
cal diversity can be obtained via the DMD with a thin
representation of the diversity levels. Mapping local
diversity results is a way to reach this objective. In
summary, proposing the unified DMD analysis frame-
work that enables local representation of diversity at
distance, regardless of the entropy measure chosen,
with results that can be easily interpreted. We present
the methodology adopted for that purpose in the next
section.

5.2 DMD as a first-class instrument for measuring
biodiversity

First, we demonstrate that continuous diver-
sity measures enable precise evaluation of
local diversity. The high variability of the local
measurement in our empirical example verifies the
importance of using a continuous approach when
measuring biodiversity. An evaluation of park-level
biodiversity can be informative but is insufficient for
addressing processes that can occur at smaller scales.
The economic stakes associated with biodiversity are
enormous and the importance of developing statistical
tools for accurate measurement has been intensely ex-
amined (Cognie and Péron, 2020; Strange et al., 2024).
The analysis developed in this study contributes to
improving biodiversity evaluation. Moreover, geolo-
calized environmental data are becoming increasingly
available. Consequently, if geolocalized data are
available, we recommend retaining a continuous
approach toward space. Treating space as a collection
of spatial units faces many challenges that have been
summarized by the MAUP. The key point is that
aggregating spatial data erases particularities that are
precisely what we seek to reveal. As we emphasize,
biodiversity measurement is a first step in the overall
analysis and estimates should be precise and unbiased.
DMD offers this possibility.

Second, the proposed divent R package
enables the calculation of the DMD. The
continuous calculation and mapping of diversity for
the Parc des Buttes Chaumont only takes a few dozen
seconds on a personal computer, depending on its
performance. This computation time is considerably
longer than park-wide, but remains tractable for quite
large datasets.

Finally, as DMD is powerful for measuring bio-
diversity, the definition of the local diversity
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should be carefully motivated. The distance at
which the evaluation is conducted and the definition
of the biodiversity chosen really matter. As a conse-
quence, a precise motivation for the order of diversity
used and the distance chosen is highly recommended
for any analysis. Therefore, economic theory should
be mobilized and developed to address this concern
in future research endeavors. This warning is exactly
the same when using a distance-based method to
measure spatial concentration (Marcon and Puech,
2017).

5.3 Potential applications
This study opens the way to numerous applications
of DMD in environmental economics. Our method-
ology can be easily integrated and developed in eco-
nomic models that include environmental variables.
The advantage is that local biodiversity can be eval-
uated within the framework of a continuous space, re-
gardless of the geographic scale chosen. For example,
consider hedonic price models for properties. The lo-
cal biodiversity level may be one of the characteristics
that explains properties’ price. Indeed, studies have
demonstrated that properties’ environmental charac-
teristics are an important consideration. For example,
a lake or ocean view and quality have a positive effect
on property price (Brookshire et al., 1982; Sirmans
et al., 2005). This is also applicable to the presence of
trees in cities (see Sander et al., 2010, for a review).
The significance of local biodiversity can be evaluated
using DMD.

Another research method could be integrating
DMD into recreational ecosystem services models. A
more accurate treatment of space in the biodiversity
measurement should enrich the actual evaluation of
advantages provided by nature that has constituted a
real and significant challenge for economists (IPBES,
2019; Roy et al., 2023). For example, evaluating
biodiversity at the forest or park scale requires an
external perspective. The DMD framework offers a
complementary approach to existing methods by eval-
uating diversity at the local rather than global level.
As Reardon and O’Sullivan (2004), Shimatani (2001)
or Wiegand et al. (2007), DMD applies biodiversity
measurement from an internal perspective around
any entity analyzed (e.g., trees) within any distance.
This entity-centered approach introduces a new
technique for investigating biodiversity. We present
the following illustrative case for clarity. Consider
a walker who strolls around an urban park or a
forest. DMD enables the estimation of biodiversity
perceived by this walker along the path. Biodiversity
can be evaluated at a distance of 10–20 meters; for
example, on the path and along the path if the view
is unobstructed or lesser. An economic analysis may
then be proposed, based on the local biodiversity
estimates perceived from the chosen path. Such
results can contribute to evaluating local recreational
ecosystem services for walkers along the paths in
the park. The interest of combining highly detailed

diversity estimation and mapping has been previously
demonstrated for evaluating ecosystem services (e.g.,
Hauck et al. (2013); Tardieu and Tuffery (2019); Su-
chocka et al. (2023)). The resulting map can provide
easily understandable information on the diversity
level in any point of the area examined. Therefore,
this economic statistical development aligns with
Peña et al. (2015), who emphasized that “[…] maps
are valuable representations of real conditions and
very powerful tools for communicating complex data
and information” for ecosystem services. Finally, it is
logical that comparisons of results across time would
be informative for policymakers to quantify local
biodiversity variations more accurately; for instance,
within a city or in particular areas. Local maps can
be easily generated to identify areas with low or high
biodiversity levels.

6. Conclusion
This study introduces a new technique for measuring
biodiversity at the local scale. The DMD is developed
in a continuous-space framework for measuring local
diversity using Hill numbers. The new R package di-
vent supports the diversity measurement calculation.

This study proposes the first empirical application
on trees in a Parisian park to demonstrate the advan-
tages of DMD for measuring biodiversity. DMD offers
a useful approach for researchers, particularly those
engaged in environmental economics. This method
provides a clear visualization of the biodiversity of the
area studied. Furthermore, DMD offer a simple frame-
work for providing precise diversity results that are
comparable for any scale of observation, without any
statistical bias.

DMD may be extended straightforwardly to phy-
logenetic and functional diversities, by incorporating
distances between species (in ecology) or sectors of
activity (in economics) based on a phylogeny or func-
tional features in the definition of diversity.

Appendix
R code is available at the following address: https:
//florencepuech.github.io/DMD/Appendix.pdf
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